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What is Strong Field Physics?

Photoelectric effect: we learned from textbook

- Light with frequency below the threshold is unable to ionize
electron

- Kinetic energy of photoelectron is independent of light intensity
- Electron doesn’t require time to absorb energy

- Free electron cannot absorb a photon
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Ac-Stark Shift

For an atomic or a molecular system, the single-electron
Hamiltionian in laser field (with dipole approximation) is

H= 1[p+A(1r)]2 + V()

2
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Vi(t)
Ho gauge free
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(At least far from atom,) plane wave is still eigenstate of the system
with eigen energy unchange

Uyolkov = exp(ik - r — iExt) exp(—ik - /A(t) df),

But “average energy” of ground state changes from Eg to Eq + 4.



Ac-Stark Shift

For an atomic or a molecular system, the single-electron
Hamiltionian in laser field (with dipole approximation) is

H= %[erA(t)]Z + V()

_1. . 1
= 5P* +V(N+p A(t)w.

—_— ———
Ho ) gauge free

(At least far from atom,) plane wave is still eigenstate of the system
with eigen energy unchange

Uyolkov = exp(ik - r — iExt) exp(—ik - /A(t) df),
But “average energy” of ground state changes from Eg to Eq + 4.

Thus, for n-photo ionization, the energy conservation law changes

Ex=Ey+nvw — E(r=Ey++nw



Dynamical Interference

In practical, we use laser pulse instead of monochromatic field.
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Dynamical Interference

In practical, we use laser pulse instead of monochromatic field.

Ex

Eo+Omax+w

Eo+w

- Ex move forward and backward as instantaneous intensity
change.

- Time domain double-slit in the rising and falling part.

Demekhin, P. V. et al. Phys. Rev. Lett., 108, 253001 (2012)



Essential Condition

Ground state amplitude

t t
ao(t)E<0|\I/(t)>%exp{—iEot—i/ 8[I(r)] dT_/ 7[’;7)](17}

Baghery, M..et al. Phys. Rev. Lett., 118, 143202 (2017)
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Essential Condition

Ground state amplitude

t t
ao(t)E<0|\I/(t)>%exp{—iEot—i/ 8[I(r)] dT_/ 7[’;7)](17}

PMD according to modified perturbation theory

2
ALY = ' / (k|e%p- Ao(t)e™*ao(t) | 0) dt

For Ex = Ep +w + d[I(t1)] = Eo + w + J[/(t2)], we have
A o |ag(ty) + e/ B =t g, (1,2

t b T 2
1+exp{i/t (5[/(7)}—50)d7—/t Wé ) dTH

It requires § > /my for linear-response region.

X

Baghery, M..et al. Phys. Rev. Lett., 118, 143202 (2017)



Possible Solutions

Increase § - Decrease vy o
Near-resonance ionization from - Multi-photon ionization:
excited state ~ oc I" where § oc I.

Phys. Rev. A, 93, 023419 (2016)

- Stabilization at high intensity:
v — 0 when />10®W/cm?.

OE 26, 019921 (2018)

NE

- lonization suppression for
diatomic molecule: would be
discussed latter.

dimensionless Stark shift &

L L L -
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photon frequency o [eV]

Phys. Rev. Lett., 118, 143202 (2017) 6



Question: How to compute § and ~?

Floquet Theory
In the presence of a monochromatic field, the Hamiltonian of the

system is expressed as

1 ) )
H(t) = Ho + 5(Vje"! + Vie ™),

one can remove the time-dependence by introducing photon field

1
H:H0®I+§(V7®a+v,®af)+hw/v,
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Question: How to compute § and ~?

Floquet Theory
In the presence of a monochromatic field, the Hamiltonian of the

system is expressed as

1 ) )
H(t) = Ho + 5(Vje"! + Vie ™),

one can remove the time-dependence by introducing photon field

1
H:H0®I+§(V7®a+v,®af)+hw/v,

Quasi-energy
- Decay indicates the imaginary part of energy E = Eq + 6 — iv/2.

- Reiv/2Exr > 0 for Re Ex > 0 and Im Ex < 0, non-square
integrable.



Complex Eigenvalues

Ho usually contains several discrete levels and a continue spectra
* * S0
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Complex Eigenvalues

Ho usually contains several discrete levels and a continue spectra
* * S0

In the Vo — 0 limit, spectra for different photon number can be put
together (only show for n and n — 1 photon number state for clear)

- w >

* * S0

With non-zero interaction, due to the ‘level repulsion’, the discrete
states have to be complex

* * oo O 2 and



Complex Rotation

Balslev-Combes theorem .
Upon the transformation r — re'®, the discrete spectra of H will not

change while its continue spectra rotate in complex plane with angle
—2a.

Simon, B., Ann. Math., 97, 247 (1973)
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Arnoldi Propagator for Finding Eigenvalues

Since the spectra is periodic in energy domain with period of w, we
can remove such complexity by investigating the spectra of

U2r/w) = exp(—27iH/w),

which is equivalent to original propagator

7/ w
T exp [i /02 H(s) ds] ,

and can be solved with numerical method for usual time-dependent
Shrodinger equation.

Thus one can diagonalize U in Krylov subspace span{, U, ..., U}

Telnov, D. A. and Chu, S-I. J. Phys. B: At. Mol. Opt. Phys. 37, 1489 (2004).



Results for H Atom

g
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Results for H Atom - Cont.

For w = 0.6 a.u., stabilization (thus dynamics interference) happens
at a much low intensity
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Results for H Atom - Co
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Why does atom stabilize in ultrahigh intensity laser field?

- Laser field is dominant than
Coulomb potential.

- Electron oscillates following
the vector potential o

p+ A(f) = cosnt.

2

- lonization comes from
Rutherford scattering
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- Such mechanism is valid Intensity (a.u.)
when A2/2 ~ Ep + w.

Pont, M. and Shakeshaft, R. Phys. Rev. A 44, R4110 (1991).
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Results for HJ - Fixed nuclear

For fixed-nuclear H," at frequency close to threshold, § > /7y can
be achieved without stabilization.
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Results for HJ - Fixed nuclear

Strong distortion in angular distribution at high intensity

lp =5%x10"W/cm?  Ip =3 x10""W/cm? Iy =7 x 10" W/cm?

To = 2560.c. To = 320.C. To = 3o.c.
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Potential Energy Curves
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Results for H] - BO Approx.

5.
5.0
__ 45

3 4.0

- Information of field-dressed ;:;g-g
vibrational state under BO o
approx. can be obtained by oorzf (b),
diagonalizing o] ee i
Heo = —o- 2 LB R 0),,
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- Effects of the nuclear motion e

break down the interference g ot

condition in perturbation region. oo




Results for H] - BO Approx.

Solve nuclear motion on PEC to get Joint energy distribution
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Stretch R to a large value adiabatically is impossible since T > v. 19



Conclusion and Perspectives

- Developed a non-Hermitian Floquet program for evaluation of
the ac-stark shift and decay rate of H atom and H,".

- ldentified the parameter region of dynamical interference.

- Electron-nuclear correlation is discussed under the framework
of BO approx.

- Manuscript submitted to Phys. Rev. A.
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Thanks for attention!
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High Frequency Floquet Theory

Under the gauge transformation
T = exp [ip./A(t)dt} v,
we have Kramers-Henneberger Hamiltonian
Hh () = %pz y [r+ /A(t)dt} .
Expand U(r, t) into Fourier series and treat high frequency terms as

perturbation, we notice that energy shift in this scheme is only
dependent on amplitude of [A(f)dt ie, a.
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