Non-Hermitian Floquet Theory

Application to Dynamical Interference

Hao Liang

Dec., 7, 2019

School of Physics, Peking University Beijing, 100871 China Email: haoliang@pku.edu.cn

What is Strong Field Physics?

Photoelectric effect: we learned from textbook

- Light with frequency below the threshold is unable to ionize electron
- Kinetic energy of photoelectron is independent of light intensity
- Electron doesn't require time to absorb energy
- Free electron cannot absorb a photon

What is Strong Field Physics?

Photoelectric effect: strong field physics

- Light with frequency below the threshold is unable to ionize electron
- Multi-photon ionization
- Kinetic energy of photoelectron is independent of light intensity
- Ac-Stark shift / Up shift
- Electron doesn't require time to absorb energy
- Ionization time-delay $\sim 10^{-17}\,{
 m s}$
- Free electron cannot absorb a photon
- Above threshold ionization

Krausz, F. and Ivanov, M. *Rev. Mod. Phys.*, **81**, 162 (2009) Peng, L.-Y. *et al. Phys. Rep.*, **575**, 1 (2015)

What is Strong Field Physics?

Photoelectric effect: strong field physics

- Light with frequency below the threshold is unable to ionize electron
- Multi-photon ionization
- Kinetic energy of photoelectron is independent of light intensity
- Ac-Stark shift/Up shift
- Electron doesn't require time to absorb energy
- Ionization time-delay $\sim 10^{-17}\,{
 m s}$
- Free electron cannot absorb a photon
- Above threshold ionization

Krausz, F. and Ivanov, M. *Rev. Mod. Phys.*, **81**, 162 (2009) Peng, L.-Y. *et al. Phys. Rep.*, **575**, 1 (2015)

Ac-Stark Shift

For an atomic or a molecular system, the single-electron Hamiltionian in laser field (with dipole approximation) is

$$H = \frac{1}{2} [\boldsymbol{p} + \boldsymbol{A}(t)]^2 + V(\boldsymbol{r})$$

= $\underbrace{\frac{1}{2} \boldsymbol{p}^2 + V(\boldsymbol{r})}_{H_0} + \underbrace{\boldsymbol{p} \cdot \boldsymbol{A}(t)}_{V_l(t)} + \underbrace{\frac{1}{2} \boldsymbol{A}^2(t)}_{\text{gauge free}}.$

Ac-Stark Shift

For an atomic or a molecular system, the single-electron Hamiltionian in laser field (with dipole approximation) is

$$H = \frac{1}{2} [\boldsymbol{p} + \boldsymbol{A}(t)]^{2} + V(\boldsymbol{r})$$

= $\underbrace{\frac{1}{2} \boldsymbol{p}^{2} + V(\boldsymbol{r})}_{H_{0}} + \underbrace{\boldsymbol{p} \cdot \boldsymbol{A}(t)}_{V_{l}(t)} + \underbrace{\frac{1}{2} \boldsymbol{A}^{2}(t)}_{\text{gauge free}}.$

(At least far from atom,) plane wave is still eigenstate of the system with eigen energy unchange

$$\psi_{\text{Volkov}} = \exp(\mathbf{i}\mathbf{k}\cdot\mathbf{r} - \mathbf{i}\mathbf{E}_k t) \exp(-\mathbf{i}\mathbf{k}\cdot\int\mathbf{A}(t)\,\mathrm{d}t),$$

But "average energy" of ground state changes from E_0 to $E_0 + \delta$.

Ac-Stark Shift

For an atomic or a molecular system, the single-electron Hamiltionian in laser field (with dipole approximation) is

$$H = \frac{1}{2} [\boldsymbol{p} + \boldsymbol{A}(t)]^{2} + V(\boldsymbol{r})$$

= $\underbrace{\frac{1}{2} \boldsymbol{p}^{2} + V(\boldsymbol{r})}_{H_{0}} + \underbrace{\boldsymbol{p} \cdot \boldsymbol{A}(t)}_{V_{l}(t)} + \underbrace{\frac{1}{2} \boldsymbol{A}^{2}(t)}_{\text{gauge free}}.$

(At least far from atom,) plane wave is still eigenstate of the system with eigen energy unchange

$$\psi_{\text{Volkov}} = \exp(i\mathbf{k}\cdot\mathbf{r} - i\mathbf{E}_k t)\exp(-i\mathbf{k}\cdot\int\mathbf{A}(t)\,\mathrm{d}t),$$

But "average energy" of ground state changes from E_0 to $E_0 + \delta$. Thus, for *n*-photo ionization, the energy conservation law changes

$$E_k = E_0 + n\omega \quad \rightarrow \quad E_k = E_0 + \delta + n\omega$$

Dynamical Interference

In practical, we use laser pulse instead of monochromatic field.

Demekhin, P. V., et al. Phys. Rev. Lett., 108, 253001 (2012)

Dynamical Interference

In practical, we use laser pulse instead of monochromatic field.

• E_k move forward and backward as instantaneous intensity change.

Demekhin, P. V., et al. Phys. Rev. Lett., 108, 253001 (2012)

Dynamical Interference

In practical, we use laser pulse instead of monochromatic field.

- E_k move forward and backward as instantaneous intensity change.
- Time domain double-slit in the rising and falling part.

Demekhin, P. V., et al. Phys. Rev. Lett., 108, 253001 (2012)

Essential Condition

Ground state amplitude

$$\mathbf{a}_{0}(t) \equiv \langle \mathbf{0} | \Psi(t) \rangle \approx \exp\left\{-\mathsf{i} \mathbf{\mathcal{E}}_{0} t - \mathsf{i} \int^{t} \delta[\mathbf{I}(\tau)] \, \mathsf{d}\tau - \int^{t} \frac{\gamma[\mathbf{I}(\tau)]}{2} \, \mathsf{d}\tau\right\}$$

Baghery, M., et al. Phys. Rev. Lett., 118, 143202 (2017)

Essential Condition

Ground state amplitude

$$\mathbf{a}_{0}(t) \equiv \langle \mathbf{0} | \Psi(t) \rangle \approx \exp\left\{-i\mathbf{E}_{0}t - i\int^{t} \delta[\mathbf{I}(\tau)] \,\mathrm{d}\tau - \int^{t} \frac{\gamma[\mathbf{I}(\tau)]}{2} \,\mathrm{d}\tau\right\}$$

PMD according to modified perturbation theory

$$A(\mathbf{k}) = \left| \int \left\langle \mathbf{k} \, \big| \, \mathrm{e}^{\mathrm{i} \mathbf{E}_{k} t} \mathbf{p} \cdot \mathbf{A}_{0}(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathbf{a}_{0}(t) \, \big| \, 0 \right\rangle \, \mathrm{d} t \right|^{2}$$

Baghery, M., et al. Phys. Rev. Lett., 118, 143202 (2017)

Essential Condition

Ground state amplitude

$$\mathbf{a}_{0}(t) \equiv \langle \mathbf{0} | \Psi(t) \rangle \approx \exp\left\{-\mathsf{i} \mathbf{\mathcal{E}}_{0} t - \mathsf{i} \int^{t} \delta[\mathbf{I}(\tau)] \, \mathsf{d}\tau - \int^{t} \frac{\gamma[\mathbf{I}(\tau)]}{2} \, \mathsf{d}\tau\right\}$$

PMD according to modified perturbation theory

$$\begin{aligned} A(\mathbf{k}) &= \left| \int \left\langle \mathbf{k} \left| e^{i\mathbf{E}_{k}t} \mathbf{p} \cdot \mathbf{A}_{0}(t) e^{-i\omega t} \mathbf{a}_{0}(t) \left| 0 \right\rangle \, \mathrm{d}t \right|^{2} \end{aligned} \right. \end{aligned}$$
For $\mathbf{E}_{k} &= \mathbf{E}_{0} + \omega + \delta[\mathbf{I}(t_{1})] = \mathbf{E}_{0} + \omega + \delta[\mathbf{I}(t_{2})], \text{ we have}$

$$\mathbf{A} \propto |\mathbf{a}_{0}(t_{1}) + \mathbf{e}^{i(\mathbf{E}_{k} - \omega)(t_{2} - t_{1})} \mathbf{a}_{0}(t_{2})|^{2}$$

$$\propto \left| 1 + \exp\left\{ i \int_{t_{1}}^{t_{2}} \left(\delta[\mathbf{I}(\tau)] - \delta_{0} \right) \mathrm{d}\tau - \int_{t_{1}}^{t_{2}} \frac{\gamma[\mathbf{I}(\tau)]}{2} \, \mathrm{d}\tau \right\} \right|^{2} \end{aligned}$$

It requires $\delta > \sqrt{\pi}\gamma$ for linear-response region.

Baghery, M., et al. Phys. Rev. Lett., 118, 143202 (2017)

Increase δ Near-resonance ionization from excited state

$$\delta \sim \sum_{i} \frac{|\boldsymbol{d}_{i0}|^2}{\boldsymbol{E}_i - \boldsymbol{E}_0 \pm \omega}$$

Decrease γ

• Multi-photon ionization: $\gamma \propto I^n$ where $\delta \propto I$.

Phys. Rev. A, 93, 023419 (2016)

• Stabilization at high intensity: $\gamma \rightarrow \mathbf{0}$ when $I \gtrsim 10^{18} \,\mathrm{W/cm^2}$.

OE **26**, 019921 (2018)

• Ionization suppression for diatomic molecule: would be discussed latter.

Phys. Rev. Lett., 118, 143202 (2017)

Floquet Theory In the presence of a monochromatic field, the Hamiltonian of the system is expressed as

$$H(t) = H_0 + \frac{1}{2}(V_l^{\dagger} \mathbf{e}^{i\omega t} + V_l \mathbf{e}^{-i\omega t}),$$

one can remove the time-dependence by introducing photon field

$$H = H_0 \otimes I + \frac{1}{2} (V_I^{\dagger} \otimes \boldsymbol{a} + V_I \otimes \boldsymbol{a}^{\dagger}) + \hbar \omega \mathcal{N},$$

Floquet Theory In the presence of a monochromatic field, the Hamiltonian of the system is expressed as

$$H(t) = H_0 + \frac{1}{2}(V_l^{\dagger} \mathbf{e}^{i\omega t} + V_l \mathbf{e}^{-i\omega t}),$$

one can remove the time-dependence by introducing photon field

$$H = H_0 \otimes I + \frac{1}{2} (V_I^{\dagger} \otimes \boldsymbol{a} + V_I \otimes \boldsymbol{a}^{\dagger}) + \hbar \omega \mathcal{N},$$

Quasi-energy

• Decay indicates the imaginary part of energy $\boldsymbol{E} = \boldsymbol{E}_0 + \delta - i\gamma/2$.

Floquet Theory In the presence of a monochromatic field, the Hamiltonian of the system is expressed as

$$H(t) = H_0 + \frac{1}{2}(V_l^{\dagger} \mathbf{e}^{i\omega t} + V_l \mathbf{e}^{-i\omega t}),$$

one can remove the time-dependence by introducing photon field

$$H = H_0 \otimes I + \frac{1}{2} (V_I^{\dagger} \otimes \boldsymbol{a} + V_I \otimes \boldsymbol{a}^{\dagger}) + \hbar \omega \mathcal{N},$$

Quasi-energy

- Decay indicates the imaginary part of energy $\boldsymbol{E} = \boldsymbol{E}_0 + \delta i\gamma/2$.
- $\operatorname{Re} i\sqrt{2E_k}r > 0$ for $\operatorname{Re} E_k > 0$ and $\operatorname{Im} E_k < 0$, non-square integrable.

 ${\it H}_0$ usually contains several discrete levels and a continue spectra

 H_0 usually contains several discrete levels and a continue spectra

In the $V_0 \rightarrow 0$ limit, spectra for different photon number can be put together (only show for *n* and *n* – 1 photon number state for clear)

 H_0 usually contains several discrete levels and a continue spectra

In the $V_0 \rightarrow 0$ limit, spectra for different photon number can be put together (only show for *n* and *n* – 1 photon number state for clear)

With non-zero interaction, due to the 'level repulsion', the discrete states have to be complex

$$E_i' = E_i + \delta - i\gamma/2$$

Balslev-Combes theorem

Upon the transformation $\mathbf{r} \to \mathbf{r} \mathbf{e}^{i\alpha}$, the discrete spectra of H will not change while its continue spectra rotate in complex plane with angle -2α .

Simon, B., Ann. Math., 97, 247 (1973)

Balslev-Combes theorem

Upon the transformation $\mathbf{r} \to \mathbf{r} \mathbf{e}^{i\alpha}$, the discrete spectra of H will not change while its continue spectra rotate in complex plane with angle -2α .

After considering all photon number states, we have these structures

Simon, B., Ann. Math., 97, 247 (1973)

Since the spectra is periodic in energy domain with period of ω , we can remove such complexity by investigating the spectra of

 $U(2\pi/\omega) \equiv \exp(-2\pi i H/\omega),$

which is equivalent to original propagator

$$\mathcal{T} \exp\left[-i\int_0^{2\pi/\omega} \textit{H}(\textit{s})\,d\textit{s}\right],$$

and can be solved with numerical method for usual time-dependent Shrödinger equation.

Thus one can diagonalize **U** in Krylov subspace span{ ψ , $U\psi$,..., $U^{n}\psi$ }.

Telnov, D. A. and Chu, S.-I. J. Phys. B: At. Mol. Opt. Phys. 37, 1489 (2004).

Results for H Atom

Jiang, W. C., et al. OE 26, 019921 (2018)

For $\omega = 0.6 a.u.$, stabilization (thus dynamics interference) happens at a much low intensity

Results for H Atom - Cont.

Why does atom stabilize in ultrahigh intensity laser field?

- Laser field is dominant than Coulomb potential.
- Electron oscillates following the vector potential

 $\boldsymbol{p} + \boldsymbol{A}(t) = \text{cosnt.}$

 Ionization comes from Rutherford scattering

 $\sigma \propto 1/\textit{E}^2$

• Such mechanism is valid when $A_0^2/2 \sim E_0 + \omega$.

Pont, M. and Shakeshaft, R. Phys. Rev. A 44, R4110 (1991).

For fixed-nuclear H_2^+ at frequency close to threshold, $\delta > \sqrt{\pi}\gamma$ can be achieved without stabilization.

Strong distortion in angular distribution at high intensity

Potential Energy Curves

Results for H_2^+ - BO Approx.

ω=1.25 5.0 (a) $\mu = 2.28$ (17.8) (1 Information of field-dressed 3.5 vibrational state under BO approx. can be obtained by 0.012 v (a.u.) 0.010 diagonalizing 0.008 $H_{\rm BO} = -\frac{1}{2M} \frac{\partial^2}{\partial R^2} + \frac{1}{R} + E_0[R; I(t), \omega],$ 0.006 (c) 0.20 /πΓ (a.u.) Effects of the nuclear motion 0.15 0.10 break down the interference condition in perturbation region. 0.05 0.00 0.0 0.5 1.0 1.5 2.5 3.0 3.5 α (a.u.)

∆ (a.u.)

Results for H_2^+ - BO Approx.

Solve nuclear motion on PEC to get Joint energy distribution

$$P_{ad}(E_N, E_e) = \left| \int_{t_s}^{t_e} dt \, e^{i(E_N + E_e - \omega)t} \int_0^\infty \Phi_f^*(R; E_N) \sqrt{\frac{\gamma[R; I(t)]}{2\pi}} \Phi(R, t) \, dR \right|^2,$$

Stretch R to a large value adiabatically is impossible since $\Gamma > \nu$.

- Developed a non-Hermitian Floquet program for evaluation of the ac-stark shift and decay rate of H atom and H_2^+ .
- Identified the parameter region of dynamical interference.
- Electron-nuclear correlation is discussed under the framework of BO approx.
- Manuscript submitted to Phys. Rev. A.

- Developed a non-Hermitian Floquet program for evaluation of the ac-stark shift and decay rate of H atom and H_2^+ .
- Identified the parameter region of dynamical interference.
- Electron-nuclear correlation is discussed under the framework of BO approx.
- Manuscript submitted to Phys. Rev. A.

Thanks for attention!

Under the gauge transformation

$$\Psi
ightarrow \exp\left[\mathrm{i} oldsymbol{\rho} \cdot \int oldsymbol{A}(t) \,\mathrm{d}t
ight] \Psi,$$

we have Kramers-Henneberger Hamiltonian

$$H_{\mathrm{KH}}(t) = rac{1}{2} p^2 + U\left[r + \int A(t) \, \mathrm{d}t
ight].$$

Expand $U(\mathbf{r}, t)$ into Fourier series and treat high frequency terms as perturbation, we notice that energy shift in this scheme is only dependent on amplitude of $\int \mathbf{A}(t) dt$, i.e., α .