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Problem
Solving the time-dependent Schrödinger equation (TDSE) of H+

2 in strong
linearly polarized laser fields in the prolate spheroidal coordinates (ξ, η, φ)

with the Born-Oppenheimer (BO) approximation at large internuclear distance
R to get accurate photoelectron momentum distributions (PMD).

iS∂tΨ(t) = H(t)Ψ(t) = [H0 + Hint(t)]Ψ(t), (1)

where the overlap term S = (R/2)3(ξ2 − η2), and the time-independent
hamiltonian
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For a linearly polarized pulse ~A(t) = A(t)ŷ along the molecular axis, the
interaction hamiltonian Hint(t) under the dipole approximation is respectively
expressed as
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in the velocity gauge, and as

HL
int(t) = E(t)(R/2)4(ξ2 − η2)ξη, (4)

in the length gauge, with E(t) = −∂tA(t).

Method[1]

The angular variables (η, φ) are expanded using the spherical harmonics Y m
` ,

and the radial coordinates ξ is discretized by the finite element discrete
variable representation (FE-DVR), i.e.

Ψ(ξ, η, φ, t) =
∑
I,`,m

aI`,m(t)χI(ξ)Y m
` (arccos η, φ), (5)

where χI(ξ) stands for χq
i (ξ), i.e., the i-th basis function on the q-th finite
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with the neighbouring finite elements connected by the bridge function
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where Q is the total number of finite elements, f q
i (ξ) is the DVR basis function

of order n and Θ(x) is the Heaviside theta function. In practice, to overcome
the singularity at ξ = 1, one uses the Gauss-Radau quadrature with the right
end point fixed for the first finite element and the Gauss-Lobatto quadrature for
the rest of the elements. For a linearly polarized pulse along the molecular
axis, m is conserved and taken to be 0 in Eq. (5). For time evolution, we use
Arnoldi propagator with an adaptive time step control. Finally, the
wavefunction is projected onto scattering state of H2

+ calculated by
Killingbeck-Miller method to get physical observable. Splitting scheme in the
asymptotic region is used to save the computation effort.

What’s new[2]

Usually, the Gauss-quadrature approximation (GA) is used to evaluate matrix
elements in DVR, i.e. for any operator D, we can compute 〈i|D|j〉 by

〈i|D|j〉 =

∫ b

a
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wkf ∗i (xk)[Dfj](xk), (8)

where {fi(x)} are often chosen to be Lagrange polynomials satisfying
fi(xk) = δik . One can show, for differential operator D = g∗(x) d/dx g(x),
such kind of GA would result in a non-anti-Hermitian matrix except for few
cases, i.e., Dij 6= −D∗ji , causing a non-Hermitian Hamiltonian and unstable
time evolution of wavefunction. In the present work, we choose to approximate
〈i|D|j〉 as follows

〈i|D|j〉 =

∫ b

a
f ∗i (x)g(x)

d
dx

[g(x)fj](x) dx ≈ wig(xi)
∗g(xj)f ′j (xi), (9)

to get an anti-Hermitian matrix. To apply the new GA for the differential
operator in the interaction hamiltonian of the velocity gauge, we look back on
Eq. (3) and notice that g(x) =

√
x2 − 1 in Eq. (9). Then, for the q-th finite
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As one can see, the anti-hermiticity is hold except for diagnal terms at
boundaries of different finite elements, which would cancel out since the
bridge function Eq. (7) is applied.

Results
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Figure 1: Total cross section (TCS) by one-photon ionization at equilibrium distance R = 2
a.u., from the present velocity gauge (green solid line) and length gauge (black dashed line),
compared with Bates’s data (red circle).

Figure 2: Electron momentum distributions by an 8-cycle pulse at the wavelength of 800 nm
and the peak intensity of 2 × 1014 W cm−2 for: (a) H+

2 at R = 23.3 a u from 1sσg (left side)
and 2pσu (right side); (b) H atom from the 1s state. White arrows indicate the position
corresponding to energy of 10.007Up. Compared to the atom, one can clearly observe the
extended cutoff for the molecular case due to the event that the electron is ionized from one
nuclear but re-collides with the other.
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